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ABSTRACT

We introduce a low Mach number equation set for the large-scale numerical

simulation of carbon-oxygen white dwarfs experiencing a thermonuclear defla-

gration. Since most of the interesting physics in a Type Ia supernova transpires

at Mach numbers from 0.01 to 0.1, such an approach enables both a consider-

able increase in accuracy and savings in computer time compared with frequently

used compressible codes. Our equation set is derived from the fully compressible

equations using low Mach number asymptotics, but without any restriction on

the size of perturbations in density or temperature. Comparisons with simula-

tions that use the fully compressible equations validate the low Mach number

model in regimes where both are applicable. Comparisons to simulations based

on the more traditional anelastic approximation also demonstrate the agreement

of these models in the regime for which the anelastic approximation is valid. For

low Mach number flows with potentially finite amplitude variations in density

and temperature, the low Mach number model overcomes the limitations of each

of the more traditional models and can serve as the basis for an accurate and

efficient simulation tool.

Subject headings: supernovae: general — white dwarfs — hydrodynamics —

nuclear reactions, nucleosynthesis, abundances — convection — methods: nu-

merical

1. Introduction

A broad range of interesting phenomena in science and engineering occur in a low

Mach number regime in which the fluid velocity is much less than the speed of sound.

Several low Mach number schemes have been developed to exploit this separation of scales;
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these models capture the fluid dynamics of interest without the need to resolve acoustic

wave propagation. Physically, one can think of the solution to a low Mach number model

as supporting infinitely fast acoustic equilibration rather than finite-velocity acoustic wave

propagation. Mathematically, this is manifest in the addition of a constraint on the velocity

field to the system of evolution equations. This velocity constraint can be translated into

an elliptic equation for pressure that expresses the equilibration process. Because explicit

discretization schemes for the low Mach number system are limited by the fluid velocity

and not by the sound speed, they often gain several orders of magnitude in computational

efficiency over the traditional compressible approach.

The simplest low Mach number model is expressed by the incompressible Navier-Stokes

equations for a constant density fluid. Generalizations that incorporate variations in den-

sity include the Boussinesq approximation (Boussinesq 1903), which allows heating-induced

buoyancy in a constant density background, and the anelastic atmospheric (Batchelor 1953;

Ogura & Phillips 1962; Dutton & Fichtl 1969; Gough 1969; Lipps & Hemler 1982, 1985; Lipps

1990; Wilhelmson & Ogura 1972) and stellar (Latour et al. 1976; Gilman & Glatzmaier 1981;

Glatzmaier 1984) approximations that include the effect of large-scale background stratifica-

tion in the fluid density and pressure but assume small thermodynamic perturbations from

the background. Low Mach number models for chemical combustion (Rehm & Baum 1978;

Majda & Sethian 1985; Day & Bell 2000) and nuclear burning (Bell et al. 2004) incorporate

large compressibility effects due to chemical/nuclear reactions and thermal processes with a

spatially constant background pressure.

Low Mach number models to date have, with one exception, allowed either zero vol-

umetric changes (incompressible Navier-Stokes, Boussinesq) or changes due only to local

heating effects (low-speed combustion, nuclear burning), or to large-scale background strat-

ification (anelastic). The only low Mach number model that incorporates both finite local

expansion due to heating and volume changes due to background stratification is the pseudo-

incompressible equation set for the terrestrial atmosphere, introduced by Durran (1989) and

rigorously derived using low Mach number asymptotics by Botta et al. (1999). The formula-

tion of the pseudo-incompressible constraint assumes the ideal gas equation of state, which

results in a simplification of terms that does not hold for more general equations of state

and non-trivial changes in composition.

Our anticipated application for this model is the convective, ignition, and early prop-

agation phases of Type Ia supernovae, but the model should be applicable to many other

problems, such as Type I X-ray bursts (see, e.g., recent work by Lin (2005) for an alternate

form of the low Mach number approach for Type I X-ray bursts), classical novae, and or-

dinary convection in stars. Events such as Type Ia supernovae are characterized by a large
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range in length scales, from the O(10−4) to O(101) cm scale of the flame to the O(108) cm

scale of the white dwarf. The range in timescales is equally impressive, from the 100 years

of convection that precedes ignition to the one second duration of the explosion. Presently,

most large-scale calculations focus on the explosion itself, beginning with several seeded hot

spots to begin the runaway. In the last minutes of the convective phase, velocities reach

∼ 1% of the sound speed (Woosley 2001; Woosley et al. 2004), with temperature fluctua-

tions of at most 5% (Wunsch & Woosley 2004). These speeds are too slow for compressible

codes to accurately follow. For this reason, simulation of the convective and ignition phases

has seen only limited numerical work, e.g. Höflich & Stein (2002). Recent analytic work

(Woosley et al. 2004) suggests that full star simulations are needed to accurately capture

the convective flows and yield the spatial, temporal, and size distribution of the hot spots

that seed the explosion. Three-dimensional anelastic calculations (Kuhlen et al. 2005) have

shown that a dipole velocity field dominates the convection.

The low Mach number model presented here, like the anelastic model, will be capable

of the long time integration necessary to follow the convection. Unlike the anelastic model,

however, the low Mach number approach continues to be valid as the variation in density and

temperature increases in the flame bubbles that evolve in the early phases of the explosion.

Following the evolution from the convection through the early phases of the explosion is the

eventual target of our low Mach number methodology.

Although the derivation of the low Mach number equation set will be general, the

example we will consider is a simplified problem without reactions or thermal conduction, and

with a time-independent radially symmetric form of self-gravity. The focus of the examples

is to demonstrate the ability of the low Mach number model to accurately represent the

hydrodynamics. We will compare the simulations based on the low Mach number approach

to simulations based on the fully compressible equation set, where applicable, and to the

traditional anelastic approach, where it is applicable. We will show that the low Mach

number algorithm works well for very low Mach number flows, with validation presented up

to Mach numbers ∼ 0.2.

In the next section we derive the low Mach number equations, and in Section 3 we discuss

the numerical implementation. Section 4 contains numerical comparisons with compressible

and anelastic simulations, and in the final section we discuss our conclusions and future

work.
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2. Low Mach Number Model

We begin with the fully compressible equations governing motion in the stellar environ-

ment as described, for example, in Bell et al. (2004)

∂ρ

∂t
+∇ · (ρU) = 0 , (1)

∂ρU

∂t
+∇ · (ρUU) +∇p = −ρger , (2)

∂ρE

∂t
+∇ · (ρUE + pU) = ∇ · (κ∇T )− ρg(U · er)−

∑
k

ρqkω̇k , (3)

∂ρXk

∂t
+∇ · (ρUXk) = ρω̇k . (4)

Here ρ, U , T , and p are the density, velocity, temperature and pressure, respectively, and

E = e + U · U/2 is the total energy with e representing the internal energy. In addition,

Xk is the abundance of the kth isotope, with associated production rate, ω̇k, and energy

release, qk. Finally, g(r) is the radially dependent gravitational acceleration (resulting from

spherically symmetric self-gravity), er is the unit vector in the radial direction, and κ is the

thermal conductivity. The Reynolds number of flows in a typical white dwarf is sufficiently

large that we neglect viscosity here, though viscous terms could easily be included in the

model and the numerical methodology.

For the stellar conditions being considered the pressure contains contributions from ions,

radiation, and electrons. Thus

p = p(ρ, T, Xk) = pion + prad + pele , (5)

where

pion =
ρkBT

Āmp

, prad = aT 4/3 ,

and pele is the contribution to the thermodynamic pressure due to fermions. In these expres-

sions mp is the mass of the proton, a is related to the Stefan-Boltzmann constant σ = ac/4,

c is the speed of light, Ā =
∑

k XkAk, Ak is the atomic number of the kth isotope, and kB is

Boltzmann’s constant. The ionic component has the form associated with an ideal gas but

the radiation and electron pressure components do not. We use a stellar equation of state

as implemented in Timmes & Swesty (2000).

As a prelude to developing the low Mach number equations, we first rewrite the energy

equation (Eq. [3]) in terms of the enthalpy, h = e + p/ρ,

ρ
Dh

Dt
− Dp

Dt
= ∇ · (κ∇T )−

∑
k

ρqkω̇k = ρH , (6)
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where we introduce H to represent the enthalpy source terms.

Our goal in this section is to derive a model for low speed flows in a hydrostatically

balanced, radially stratified, background that removes acoustic waves yet allows for the

development of finite amplitude temperature and density variations. We thus posit the

existence of a background state with pressure, density and temperature p0(r, t), ρ0(r, t) and

T0(r, t) satisfying both the equation of state and hydrostatic equilibrium. Because we will

neglect reaction terms that could potentially alter the large-scale pressure distribution within

the star, for the purposes of this paper we will neglect time variation of the background state,

i.e., we will assume ∂p0/∂t = ∂ρ0/∂t = ∂T0/∂t = 0.

In order to understand the behavior of the system, we examine the balance of terms as a

function of Mach number, M = U/cs (cs is the speed of sound), which will be assumed to be

small. We re-write the momentum equation in nondimensional coordinates, where the space

and time coordinates as well as the density, velocity and pressure, are scaled by characteristic

values Lref , tref , ρref , pref , and Uref , respectively. For the problem scale of interest Uref is a

typical advective velocity, Lref a typical length scale, tref = Lref/Uref , and pref = ρref c2
sref

,

where csref
is a characteristic value of cs. We define a scaling for g in terms of the pressure

scale height, Href = pref/(ρref g).

The momentum equation in nondimensional coordinates (t̃ = t/tref , etc.), and exploiting

hydrostatic equilibrium of the reference state, has the form

∂ρ̃Ũ

∂t̃
+ ∇̃ · (ρ̃Ũ Ũ) +

1

M2
∇̃(p̃− p̃0) = − 1

M2

Lref

Href

(ρ̃− ρ̃0)g̃er ,

For the large-scale near-equilibrium behavior, we set Lref = Href , getting

∂ρ̃Ũ

∂t̃
+ ∇̃ · (ρ̃Ũ Ũ) +

1

M2
∇̃(p̃− p̃0) = − 1

M2
(ρ̃− ρ̃0)g̃er ,

where g̃ = g / (pref/(ρrefHref)).

Since all nondimensional terms are O(1), it is clear that to maintain a long-term balance,

both (p̃− p̃0) and (ρ̃− ρ̃0) must be O(M2). This is consistent with the traditional anelastic

approximation; once the density perturbation is assumed small the approximation∇·(ρ0U) =

0 follows from the continuity equation, and a linearized temperature-density relationship

can be used to replace the buoyancy term in the momentum equation by one dependent on

temperature (or entropy) rather than density.

Here, however, we are interested in finite amplitude density perturbations. In this case,

it is possible for the model to breakdown in long time integrations should the flow accelerate

to the point that M is no longer small. We would, nevertheless, expect the low Mach number
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model to remain valid for a limited period of time. The behavior of the model for finite time

intervals can be examined by considering a shorter time scale, tref = Uref/g, defined such

that on this time scale the buoyancy forcing from finite amplitude density perturbations can

accelerate the flow to at most Uref . Then, recalling tref = Lref/Uref , we see that Lref = U2
ref/g.

Recalling then that Href = pref/(ρref g) and pref = ρref c2
sref

, we see that Lref/Href = O(M2).

In this case the nondimensional momentum equation has the form

∂ρ̃Ũ

∂t̃
+ ∇̃ · (ρ̃Ũ Ũ) +

1

M2
∇̃(p̃− p̃0) = −(ρ̃− ρ̃0)g̃er ,

which is consistent with the low Mach number nuclear burning model used in Bell et al.

(2004). The assumption that tref = Uref/g is in fact unnecessarily restrictive; in a realistic

physical scenario, even in the case of locally large density variations, the fluid accelerates with

acceleration DU/Dt = a < g, and the relevant time scale would in fact be tref = Uref/a, i.e.,

the model is valid as the fluid accelerates, until the Mach number of the flow is no longer

small. In other words, the assumption of small Mach number is sufficient to guarantee

validity of the model.

We note two important features of the model thus far. The first is that in both cases

the perturbational pressure, which we will now denote as π(x, t) = p(x, t) − p0(r) satisfies

π/p0 = O(M2). Thus in all but the momentum equation (where the 1/M2 scaling requires

the presence of ∇π), we can substitute p0 for p. It is this approximation that decouples the

pressure from the density in such a way as to filter acoustic waves from the solution.

The second important feature is that the momentum equation can be retained in its

original form,
∂ρU

∂t
+∇ · (ρUU) +∇π = −(ρ− ρ0)ger ,

with no approximation to the buoyancy term and no assumption on the size of the pertur-

bational density, as long as the actual acceleration of the flow is such that Mach number of

the flow remains small.

We now consider the implications of replacing p by p0. The evolution of the non-reacting

low Mach number system is described by the mass and momentum equations in combination

with the enthalpy equation, but the system remains constrained by the equation of state

(Eq. [5]), namely, p(ρ, Xk, T ) = p0(z). To complete the low Mach number model we re-pose

the equation of state as a constraint on the velocity field, following closely the derivation in

Bell et al. (2004) but retaining stratification effects.

We begin by re-writing conservation of mass as an expression for the divergence of

velocity:

∇ · U = −1

ρ

Dρ

Dt
. (7)
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Differentiating the equation of state (Eq. [5]) along particle paths, we can write

Dp

Dt
=

∂p

∂ρ

∣∣∣∣
T,Xk

Dρ

Dt
+

∂p

∂T

∣∣∣∣
ρ,Xk

DT

Dt
+
∑

k

∂p

∂Xk

∣∣∣∣∣
ρ,T

DXk

Dt
,

or
Dρ

Dt
=

1

pρ

(
Dp

Dt
− pT

DT

Dt
−
∑

k

pXk
ω̇k

)
, (8)

with pρ = ∂p/∂ρ|T,Xk
, pT = ∂p/∂T |ρ,Xk

, and pXk
= ∂p/∂Xk|ρ,T .

We now require an expression for DT/Dt, which can be found by differentiating the

enthalpy equation (Eq. [6]):

ρ
Dh

Dt
= ρ

(
∂h

∂T

∣∣∣∣
p,Xk

DT

Dt
+

∂h

∂p

∣∣∣∣
T,Xk

Dp

Dt
+
∑

k

∂h

∂Xk

∣∣∣∣
T,p

DXk

Dt

)
=

Dp

Dt
+ ρH .

or, gathering terms,

DT

Dt
=

1

ρcp

(
(1− ρhp)

Dp

Dt
−
∑

k

ρξkω̇k + ρH

)
, (9)

where cp = ∂h/∂T |p,Xk
is the specific heat at constant pressure, ξk = ∂h/∂Xk|p,T , and hp =

∂h/∂p|T,Xk
for convenience. Substituting equation (9) into equation (8) and the resulting

expression into equation (7) yields

∇ · U =
1

ρpρ

(
−Dp

Dt
+

pT

ρcp

(
(1− ρhp)

Dp

Dt
− ρ

∑
k

ξkω̇k + ρH

)
+
∑

k

pXk
ω̇k

)

=
1

ρpρ

(
pT

ρcp

(1− ρhp)− 1

)
Dp

Dt
+

1

ρpρ

(
pT

ρcp

(ρH − ρ
∑

k

ξkω̇k) +
∑

k

pXk
ω̇k

)
.

Then, replacing p by p0(r), Dp/Dt becomes U · ∇p0, and, recalling the definition of H, the

divergence constraint can be written

∇ · U + αU · ∇p0 =
1

ρpρ

(
pT

ρcp

(
∇ · (κ∇T )−

∑
k

ρ(qk + ξk)ω̇k

)
+
∑

k

pXk
ω̇k

)
≡ S̃ , (10)

where we define

α(ρ, T ) ≡ −
(

(1− ρhp)pT − ρcp

ρ2cppρ

)
. (11)

We note that for domains sufficiently smaller than a pressure scale height where ∇p0 can be

neglected, equation (10) reduces exactly to the divergence constraint, equation (5) in Bell

et al. (2004).
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For the larger domains that are the target of this paper, we use the thermodynamic

identities as outlined in Appendix A, to write

α =
1

Γ1p0

,

where Γ1 ≡ d(log p)/d(log ρ)|s, and we have substituted p0 for p.

In the case of terrestrial atmospheres and in the absence of compositional effects, Γ1

is replaced by the constant γ = cp/cv, and using p = ρRT with R the gas constant, this

expression can be simplified to

∇ · (p1/γ
0 U) =

RH

cpp
R/cp

0

,

the pseudo-incompressible constraint as derived by Durran (1989).

For stellar atmospheres the variation in Γ1 can be decomposed into two contributing

factors: the background stratification and the local perturbation to that base state. For a

nearly isentropically stratified base state and small perturbations to the base state, Γ1 is

close to constant, hence ρ0 ∝ p
1/Γ10
0 . Neglecting expansion effects from thermal diffusion or

reactions, this then reduces to the traditional anelastic approximation,

∇ · (ρ0U) = 0 .

For the more general case Γ10 = Γ1(ρ0, T0, p0) is not constant, but we can exploit the

fact that both p0 and Γ10 are functions only of r. It is straightforward (see Appendix B) to

show that in this case the constraint can be written

∇ · (β0(r)U) = β0S̃ , (12)

where

β0(r) = β(0) exp

(∫ r

0

(
p′0

Γ10p0

) dr′
)

.

For the types of problems amenable to the low Mach number model, the density and

temperature perturbations may be large, but even so the variation of Γ1 due to the pertur-

bation is at most a few percent. For the examples in this paper we will neglect the local

variation of Γ1; this assumption will be re-examined in subsequent work.

For the purposes of comparing the fundamental hydrodynamic behavior of the low Mach

number model relative to established compressible and anelastic formulations, we will for the

remainder of this paper neglect the effects of variation in composition, reactions, and thermal
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conduction. Summarizing the low Mach number equation set for this specialized case and

re-writing the momentum equation as an evolution equation for velocity instead, we now

have

∂ρ

∂t
= −∇ · (ρU) ,

∂U

∂t
= −U · ∇U − 1

ρ
∇π − (ρ− ρ0)

ρ
ger ,

∇ · (β0U) = 0 .

We note that this system contains three equations for three unknowns: density, velocity

and pressure. The equation of state was used to derive the constraint thus to include it

here would be redundant. When reactions and compositional effects are included in future

work, the evolution equations for species and energy (in the form of temperature, entropy or

enthalpy) will be added to this system, but for the simple hydrodynamical tests we present

here this system is sufficient.

3. Numerical Methodology for the Low Mach Number Model

We discretize the low Mach number equation set derived in the previous section using an

extension of the second-order accurate projection methodology developed for incompressible

flows (Bell et al. 1989, 1991; Almgren et al. 1996; Bell & Marcus 1992; Almgren et al. 1998),

and extended to low Mach number combustion (Pember et al. 1998; Day & Bell 2000) and

to small-scale reacting flow for SNe Ia (Bell et al. 2004). We refer the reader to the above

references for numerical examples demonstrating the second-order accuracy of the overall

methodology, as well as for many of the details of projection methods. Here we present a

brief overview of the numerical methodology as applied to this equation set. The absence

of reactions and presence of β0 in the projection steps are the key differences relative to the

algorithm in Bell et al. (2004).

In the projection approximation, explicit discretizations of the evolution equations are

first used to approximate the velocity and thermodynamic variables at the new time, then an

elliptic equation for pressure, derived from the constraint imposed on the new-time velocity,

is solved to update the pressure and return the velocity field to the constraint surface. By

contrast with the traditional anelastic approach, we have not replaced conservation of mass

by the divergence constraint, which means we are able to evolve the density field with a

conservative update, rather than invoking the equation of state to diagnose it. Thus the

variables we update in each advection step are the velocity, density, and either temperature,

enthalpy, or entropy. The low Mach number constraint constrains the evolution of the
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thermodynamic variables to the manifold defined by the equation of state.

The discretization of the evolution equations is essentially a three-step process. First,

we use an unsplit second-order Godunov procedure (Colella 1990) to predict a time-centered

(tn+1/2) edge-based advection velocity, UADV,∗, using the cell-centered data at tn and the

lagged pressure gradient from the interval centered at tn−
1/2. The provisional field, UADV,∗,

represents a normal velocity on cell edges analogous to a MAC-type staggered grid discretiza-

tion of the Navier-Stokes equations (Harlow & Welch 1965). Figure 1 illustrates the MAC

grid. However, UADV,∗ fails to satisfy the time-centered divergence constraint (Eq. [12]). We

apply a discrete projection by solving the elliptic equation

DMAC(
β0

ρn
GMACφMAC) = DMAC(β0U

ADV,∗)− β0S̃
n+1/2 (13)

for φMAC, where DMAC represents a centered approximation to a cell-based divergence from

edge-based velocities, and GMAC represents a centered approximation to edge-based gradients

from cell-centered data. The solution, φMAC, is then used to define

UADV = UADV,∗ − 1

ρn
GMACφMAC .

UADV is a second-order accurate, staggered-grid vector field at tn+1/2 that discretely satisfies

the constraint (Eq. [12]), and is used for computing the time-explicit advective derivatives

for U and ρ.

We next explicitly update the density using a second-order accurate discretization of

the mass equation. (We note here that this approach differs from both the anelastic equation

set and the alternate form of the low Mach number equations as described in Lin 2005.)

ρn+1 = ρn −∆t
[
∇ · (ρUADV)

]n+1/2 .

The final step of the integration procedure is to advance the velocity to the new time

level. For this step we first obtain a provisional cell-centered velocity at tn+1 using a time-

lagged perturbational pressure gradient,

ρn+1/2
Un+1,∗ − Un

∆t
+ ρn+1/2

[
(UADV · ∇)U

]n+1/2 = −Gπn−1/2 − (ρn+1/2 − ρ0)ger ,

where ρn+1/2 = (ρn + ρn+1)/2. At this point Un+1,∗ does not satisfy the constraint. We

apply an approximate projection to simultaneously update the perturbational pressure and

to project Un+1,∗ onto the constraint surface. In particular, we solve

Lρ
βφ = D

(
β0(

Un+1,∗

∆t
+

1

ρn+1/2
Gπn−1/2)

)
− β0S̃

n+1

∆t
(14)
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for nodal values of φ, where Lρ
β is the standard bilinear finite element approximation to

∇·(β0/ρ)∇ with ρ evaluated at tn+1/2. In this step, D is a discrete second-order operator that

approximates the divergence at nodes from cell-centered data, and G = −DT approximates

a cell-centered gradient from nodal data. (See Almgren et al. (1996) for a detailed discussion

of this approximate projection; see Almgren et al. (2000) for a discussion of this particular

form of the projection operand.) Finally, we determine the new-time cell-centered velocity

field from

Un+1 = Un+1,∗ − ∆t

ρn+1/2

(
Gφ−Gπn−1/2

)
,

and the new time-centered perturbational pressure from

πn+1/2 = φ .

Specification of the initial value problem includes initial values for U and ρ at time t = 0

and a description of the boundary conditions, but the perturbational pressure is not initially

prescribed. To begin the calculation, then, the initial velocity field is first projected to ensure

that it satisfies the divergence constraint at t = 0. Then initial iterations (typically two are

sufficient) are performed to calculate an approximation to the perturbational pressure at

t = ∆t/2.

In each step of the iteration we follow the procedure described above. In the first

iteration we use π−1/2 = 0. At the end of each iteration we have calculated a new value of U1

and a pressure π
1/2. During the iteration procedure, we discard the value of U1, but define

π−1/2 = π
1/2. Once the iteration is completed, the above algorithm can be followed as written.

4. Numerical Validation and Comparison

4.1. Compressible Formulations

We compare and contrast the low Mach number results with those obtained using two

different discretizations of the fully compressible equation set, both implemented in the

FLASH Code (Fryxell et al. 2000). The first is the piecewise parabolic method (PPM) (Colella

& Woodward 1984), which is a high-order accurate, dimensionally split algorithm where the

updates are done in one-dimensional sweeps, e.g. in two dimensions

Sn+2
i,j = X(∆t)Y (∆t)Y (∆t)X(∆t)Sn

i,j ,

where S = (ρ, ρU, ρE) is the state variable, X(∆t) is the operator that updates the state

through ∆t in time in the horizontal direction, and Y (∆t) updates the state by ∆t in the
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vertical direction. One PPM cycle updates the state through 2∆t, switching the order of

the directional operators midway through to retain second-order accuracy. PPM is the

primary hydrodynamics algorithm used by the large-scale SNe Ia explosion modeling com-

munity (Röpke & Hillebrandt 2005; Plewa et al. 2004; Gamezo et al. 2003). The FLASH

implementation of PPM has been well validated (Calder et al. 2002), and serves as a good

basis for comparisons with the low Mach number algorithm.

A numerical issue that arises in fully compressible simulations, but not with the low

Mach number approach, is the difficulty of maintaining a quiet hydrostatic atmosphere.

Small displacements from hydrostatic equilibrium (HSE) can generate sound waves through-

out the atmosphere, which, if unchecked, can lead to ambient velocities that can swamp

the process being studied. The hydrostatic equilibrium improvements described in Zingale

et al. (2002), which remove the hydrostatic pressure from the pressure jump across the inter-

faces in the Riemann problem, were used for all PPM runs. The upper and lower boundary

conditions are the hydrostatic boundaries described in that same paper, with the pressure

and density modified according to hydrostatic equilibrium, and the velocities given a zero

gradient.

The second compressible algorithm we consider is a second-order unsplit method fol-

lowing Colella (1990). At low Mach number, dimensionally split methods can have trouble

producing realistic velocity fields, as will be shown in the bubble rise comparison. In the

unsplit formulation, the cell averages are updated in all directions at once. A critical part

of the unsplit method is that the interface reconstructions contain a transverse flux term

that explicitly couples in the information from the corner cells. Fourth-order accurate slope

limiting is used in the central differences, as well as high-order reconstruction of the states for

the transverse Riemann problem, as described in (Colella 1985). This is the same procedure

used in predicting the interface states in the low Mach number method presented here. This

method was extended to handle general equations of state following the procedure in Colella

& Glaz (1985), adding an additional transverse flux piece to the interface reconstruction of

γ, to be consistent with the unsplit reconstructions. This was put into the FLASH frame-

work for the present simulations. Both the PPM and unsplit solvers use the same two-shock

Riemann solver described in Colella & Glaz (1985). For both the split and unsplit solvers, a

CFL number of 0.8 was used based on the sound speed.

4.2. Anelastic Approach

The low Mach number equations and the anelastic equation set are derived differently.

Both equation sets assume a low Mach number, equivalently a small pressure perturbation
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from the background state. However, the anelastic equation set assumes both small den-

sity and small temperature perturbations as well. As noted earlier the velocity constraints

resulting from these two derivations are strikingly similar, and in fact equivalent for an isen-

tropically stratified background state. Even in the non-isentropic background considered

here, the differences between ρ0 and β0 are small.

However, because the anelastic approximation assumes small density and temperature

perturbations, approximations are made to the buoyancy term in the momentum equation.

These follow from the observation that since the perturbational density was neglected in

the continuity equation in order to derive the velocity constraint, the continuity equation

cannot be used to evolve the perturbational density. Thus an alternative formulation of the

buoyancy term must be used. A typical anelastic model evolves temperature or entropy,

and constructs the buoyancy forcing term from that field using a linearized approximation.

Following the derivation by Braginsky & Roberts (1995) that combines parts of the pressure

gradient and buoyancy terms, we consider the following form of the anelastic equations:

ρ0
DU

Dt
= −ρ0∇

(
p′

ρ0

)
−
(

∂ρ0

∂S

)
p

S ′ger ,

DS

Dt
= 0 ,

∇ · (ρ0U) = 0 .

Here S is entropy, S ′ = S−S0, p′ = p−p0, and we have neglected viscosity, thermal diffusivity

and the gravitational potential perturbation. We note that in the case of small density

and temperature perturbations, simulations using the low Mach number equations and the

anelastic approximation give indistinguishable results, thus for the numerical comparisons we

focus on problems with finite amplitude perturbations as described in the next subsection.

4.3. Bubble Rise Comparison

We present three sets of two-dimensional calculations of a rising bubble in a stellar

environment. The one-dimensional background state (ρ0, T0, p0) is calculated using the

Kepler code (Weaver et al. 1978), to evolve a Chandrasekhar mass white dwarf until the

central temperature reaches 7× 108 K, representing conditions just before ignition. We map

a portion of the one-dimensional model onto a uniform two-dimensional grid, and place it into

hydrostatic equilibrium with a constant gravitational acceleration (g = −1.9× 1010 cm s−2).

We further simplify by ignoring metric terms associated with the radial coordinate and view

the domain as Cartesian. We note that neither the constant gravity assumption nor the

simplified metric is a limitation of any of the methods presented here, but is chosen in these
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comparison simulations for simplicity. The density structure of the model is illustrated in

Figure 2.

All bubbles begin in pressure equilibrium with the background state and are defined by

a simple temperature perturbation, from which the density perturbation is calculated. We

consider three different cases, which we will distinguish by the maximum temperature at the

center of the bubble, Tmax. The temperature profile of the bubble is then defined by

T = T0 + (Tmax − T0)
1

2

(
1 + tanh

(
2.0− ξ/δ

0.9

))
,

where

ξ =
√

(x− xcent)2 + (r − rcent)2 ,

and (xcent, rcent) = (2.5×107, 6.25×107) cm, δ = 1.25×106 cm in a domain from x = 0 cm to

5×107 cm and r = 5×107 cm to 108 cm. The stellar equation of state is then used to compute

ρ given T and p0. This profile was chosen to give a smooth transition from the ambient

temperature to the perturbed temperature, thus minimizing the effects of the numerical

slope limiters present in the different hydrodynamics methods. Due to the short time scale

of the problem thermal diffusivity is neglected. For all bubble calculations presented the

grid has uniform resolution of 384 x 384; the adaptive gridding features of all the codes are

turned off.

Figures 3 and 6 present comparisons of simulations using the low Mach number ap-

proach, two different discretizations of the fully compressible equation set, as well as the

anelastic and incompressible equation sets. The low Mach number, anelastic and incom-

pressible results are calculated using the projection method approach described in the pre-

vious section. The only differences in methodology occur in the coefficient of velocity in the

projection, and in the construction of the buoyancy term. Each of these methods was run

at a CFL number of 0.9 based on the maximum advection velocity.

Figure 3 shows the temperature evolution for Tmax = 6 × 109 K. This corresponds to

an Atwood number for the bubble of approximately 0.079. In this simulation, the bubble

reaches a Mach number of about 0.2. In addition to the PPM and unsplit compressible

solvers, traditional anelastic and incompressible solvers are shown for comparison. The

low Mach number method closely tracks the two compressible solvers. The incompressible

and anelastic results demonstrate the effects of their respective assumptions. The velocity

constraint for the anelastic model is sufficiently accurate to capture the bubble rise, but

because of the linearity of the density-temperature relationship in the anelastic approach,

the buoyancy term is too small in the anelastic simulation. By contrast, the incompressible

simulation contains the full buoyancy term but due to the incompressibility constraint the
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bubble cannot expand; consequently, it reaches neutral buoyancy at a much lower level and

stops rising. We do not follow the bubbles past the point where nonlinear instabilities along

the sides begin to dominate the evolution.

A more detailed comparison of the results from Figure 3 is provided in Figure 4, where

temperature contours of the low Mach number solution are superimposed on temperature

contours of the the unsplit and PPM solutions. Here we see a large degree of overlap,

demonstrating that the bubbles have the same rise velocity and size independent of the

algorithm. Figure 5 shows the Mach number of the PPM and low Mach number methods,

further demonstrating the agreement between the two sets of results, with the exception of

the unphysical loss of symmetry in the PPM simulation.

Figure 6 shows the temperature evolution for the lower peak temperature case, Tmax =

1×109 K, and corresponding Atwood number of 0.0024. Over the course of this comparison,

the Mach number remains below 0.05. Again, we observe the agreement between the low

Mach number and compressible solvers, with the exception of the late-time breakdown of

the PPM solution, indicated by the large amplitude temperature oscillations dominating the

flow behind the bubble. These oscillations reflect the poor performance of operator split

algorithms for very low speed flows.

A more detailed comparison of the results from Figure 6 is shown in Figure 7, again

superimposing temperature contours from the low Mach number and compressible formula-

tions. We again see good agreement, with the exception of the breakdown of PPM at late

times.

Timings of the PPM and low Mach number code were made on a single processor

(1.53 GHz Athlon MP) using the Intel 8.1 compilers. Both codes were compiled with the

same compiler optimization flags: -O3 -ip -ipo. FLASH was set to run with 16× 16 zone

blocks, instead of the default 8 × 8 for better performance with uniform gridding. The

6 × 109 K bubble required 2148 timesteps, taking 14200 s to evolve the bubble to 0.25 s in

simulation time. By comparison, the low Mach number solver took 246 timesteps and 1480 s,

about an order of magnitude speed-up. For the 109 K bubble, the PPM solver took 7842

timesteps, taking 52100 s to evolve the bubble for 1 s of simulation time, while the low Mach

number solver took 252 timesteps and 1560 s. As expected, the performance gap increases as

the Mach number decreases. The unsplit compressible algorithm takes approximately twice

as much time to run as PPM, primarily due to the additional transverse Riemann solves

required.

Finally, in Figures 8 and 9 we compare the low Mach number and anelastic models for a

bubble with Tmax = 3.5× 108 K. This regime is inaccessible to the compressible formulation,
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with a peak Mach number during the calculation of 0.012. We note that, as expected, as

the Atwood number decreases the fidelity of the anelastic approximation improves.

The three cases presented in this section demonstrate successful application of the low

Mach number approach, as well as failure of the compressible approach for low-speed flows,

and failure of the anelastic approach for flows with large density or temperature variations.

The low Mach number approach, like the other methods, has limits to its applicability.

Specifically, as the flow speed, hence the Mach number, increases, typically the thermody-

namic pressure will diverge from p0 and the assumptions underlying the low Mach number

approach will be violated. As with the anelastic model, numerical simulations using the

low Mach number model will continue to yield what appear to be reasonable solutions even

as the underlying assumptions are violated, but the solutions will no longer be physically

relevant.

In the case of a bubble rise without heat sources, it is difficult to numerically demonstrate

the failure of the low Mach number method even as the Mach number increases. However,

the divergence of the low Mach number model from the compressible solution in the case of

large Mach number will be discussed more thoroughly in the subsequent paper that discusses

the behavior of the low Mach number model in the presence of heating.

5. Conclusions

We have introduced a new method for following low speed, stratified flows in astrophys-

ical conditions and have demonstrated, through comparison with compressible and anelastic

codes, that this algorithm performs well in the range of Mach number from near zero to about

0.2. The increased computational efficiency associated with a low Mach number formulation

makes it an ideal tool for investigations of the convective/ignition phase of SNe Ia. However,

to be applicable in this setting, a number of generalizations to the methodology will need to

be developed. In particular, we will need to extend the the algorithm to include the effects

of variation in composition, reactions and thermal conduction. In addition, once a flame is

established it will be necessary to include sub-grid models for turbulent flame propagation

that will enable the methodology to be used to simulate the evolution of the early phases of

the explosion. These issues will be addressed in future work.
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A. Simplification of α

In this appendix we derive a simplified expression for α introduced in equation 11.

We refer to Chapter 9 of Cox & Giuli (1968) (CG, in this appendix), for a number of

thermodynamic identities.

We begin by rewriting hp, using

∂h

∂ρ

∣∣∣∣
T

=
∂h

∂p

∣∣∣∣
T

∂p

∂ρ
= hppρ .

with

h(ρ, T ) =
p(ρ, T )

ρ
+ e(ρ, T ) .

Therefore,

hp = p−1
ρ

{
− p

ρ2
+

pρ

ρ
+ eρ

}
=

1

ρ

(
1− p

ρpρ

)
+

eρ

pρ

.

Putting this into α, we have

α = − 1

ρ2cppρ

[(
1−

(
1− p

ρpρ

)
− ρ

eρ

pρ

)
pT − ρcp

]
= − 1

ρpρcp

[(
p

ρ2pρ

− eρ

pρ

)
pT − cp

]
.

For a generalized equation of state, there are three principal adiabatic exponents which

relate the various differentials (dp, dT , and dρ). For an ideal gas, they are all equivalent.

Here, we use Γ1 (CG eq. 9.88):

Γ1 ≡
(

d ln p

d ln ρ

)
ad

.

This is related to the ratio of specific heats, γ via

γ =
cp

cV

=
Γ1

χρ

,
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(CG eq. 9.87) where

χρ ≡
(

∂ ln p

∂ ln ρ

)
T

=
ρ

p
pρ

(CG eq. 9.82) is the “density exponent in the pressure equation of state.” For an ideal gas,

χρ = 1, and Γ1 = γ. Taking all of this together, we see that

1

ρpρ

=
γ

Γ1p
.

Putting this into our α expression,

α = − γ

Γ1pcp

[(
p

ρ2pρ

− eρ

pρ

)
pT − cp

]
. (A1)

Motivated by the ideal gas result that α = 1/(γp), we want to show that the quantity in the

square brackets in equation (A1) reduces to cV .

The specific heats are related by (CG eq. 9.84)

cp − cV = −E

T

(
∂ ln E

∂ ln ρ

)
T

χT

χρ

+
p

ρT

χT

χρ

, (A2)

The temperature exponent is defined as

χT ≡
(

∂ ln p

∂ ln T

)
ρ

=
T

p
pT

(CG eq. 9.81), so equation (A2) simplifies to

cp − cV = − ρ

T
eρ

χT

χρ

+
p

ρT

χT

χρ

= −eρ
pT

pρ

+
p

ρ2

pT

pρ

,

which substitutes directly into equation (A1) to yield

α = − γ

Γ1pcp

[(cp − cV )− cp] = − γ

Γ1pcp

[−cV ] =
1

Γ1p
.

We note that Γ1 varies slowly throughout the white dwarf and is a quantity that is already

returned by the tabular equation of state.
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B. Derivation of β

We seek a function β(z) such that

1

β(z)
∇ · (βU) = (∇ · U) +

1

Γ1p0

U · ∇p0 .

We expand ∇ · (βU) = β(∇ · U) + U · ∇β and note that for the equality to hold we would

need
1

β(z)
U · ∇β =

1

Γ1p0

U · ∇p0 ,

or
1

β
wβ′ =

1

Γ1p0

wp′0 .

Since we want this to hold for all w, we are left with

β′

β
=

p′0
Γ1p0

.

We integrate this up from z = 0 :∫ z

0

β′

β
dz′ =

∫ z

0

d(ln(β))

dz
dz′ =

∫ z

0

(
p′0

Γ1p0

) dz′

so

ln(β(z))− ln(β(0)) =

∫ z

0

(
p′0

Γ1p0

) dz′ ,

or

β(z) = β(0) exp

(∫ z

0

(
p′0

Γ1p0

) dz′
)

.

We note that this also can be written as the recursive relationship

β(zk) = β(zk−1) exp

(∫ zk

zk−1

(− ρ0g

Γ1p0

) dz′

)
,

exploiting the hydrostatic equilibrium of the base state. This equation is the one we use to

numerically compute β(z); we let β(0) = ρ0(0).
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Fig. 1.— Illustration of the MAC-type grid showing the advective velocities (uADV, vADV)

and φMAC for the (i, j) cell. An unsplit Godunov method is used to predict these advective

velocities from the cell centered velocities (ui,j, vi,j) in the surrounding cells.
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Fig. 2.— Initial model generated by the Kepler code (dotted) and uniformly gridded, con-

stant gravity portion used in the bubble simulations (solid).
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Fig. 3.— Bubble evolution for five different algorithms. Here, the peak temperature is

6× 109 K. We see good agreement between the two compressible codes (PPM and unsplit)

and the low Mach number algorithm.
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Fig. 4.— Detailed comparison of the temperature field for PPM (blue), the unsplit com-

pressible algorithm (red), and the low Mach number algorithm (green), for the 6 × 109 K

perturbation. Contours are shown at 3× 109 and 4.5× 109 K.
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Fig. 5.— Mach number comparison for the 6× 109 K bubble. At early times (a.), the PPM

results show a sound wave from the initial perturbation just about to exit through the top

of the domain. This is not present in the low Mach number case, as it filters sound waves.

At late times (b.), the flow has attained a Mach number of almost 0.2 in places.
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Fig. 6.— Bubble evolution for four different algorithms. Here, the peak temperature is

1× 109 K. As with the 6× 109 K case, the PPM, unsplit, and low Mach number results are

in good agreement.
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Fig. 7.— Detailed comparison of the temperature field for PPM (blue), the unsplit com-

pressible algorithm (red), and the low Mach number algorithm (green), for the 1 × 109 K

perturbation. Contours are shown at 5× 108 and 7.5× 108 K.
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Fig. 8.— Bubble evolution the low Mach number and anelastic algorithms, showing good

agreement for the two different methods.. Here, the peak temperature is 3.5× 108 K.



– 31 –

Fig. 9.— Detailed comparison of the temperature field for the anelastic algorithm (purple)

and the low Mach number algorithm (green), for the 3.5×108 K perturbation. The contours

are at 2.5× 108 and 3× 108 K


